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Abstract
Urban water distribution systems are critical infrastructures, and their failure can lead to significant economic, environmental, 
and social losses including flood streets and loss of treated drinking water. Identifying the failure patterns of water mains 
over time under various conditions is an inexpensive approach for estimating the structural deterioration of water distribu-
tion systems. It is also an alternative method for direct inspection that requires intensive efforts and budget. Time-dependent 
factors such as temperature and precipitation variations can lead to changes in frost depths and ground movements, resulting 
in stresses that exceed design values and increasing the potential of water main failures. A few studies have addressed the 
impact of climatic variations on the failure prediction of water mains. To fill this gap, a temporal approach for the failure 
prediction of water mains under climatic variations is presented. The proposed approach can predict the failure of water mains 
at selected locations (not only one location) and allow to not only predict the failure by a one time-step ahead but also obtain 
accurate failure predictions up to 9 months ahead. Another purpose of the proposed model is to accommodate additional 
variables to predict the failure of water mains at selected locations. To achieve this objective, a vector autoregression model 
with exogenous variables that incorporates the impact of climatic variations was developed. Spatiotemporal data of water 
mains failure events and climate data are collected for this study from Quebec and Ontario, Canada. Monte Carlo method was 
applied to validate the reliability of the predictive model. In other words, the failure prediction of water mains uncertainties 
was generated using Monte Carlo simulation. Results show that climatic variations can provide valuable information for 
the failure prediction of water mains. Results also prove that the proposed model can accurately predict the temporal failure 
patterns of water mains at two water distribution systems simultaneously.

Keywords Climatic variations · Multivariate time-series · Failure prediction of water mains · Spatiotemporal data · Monte 
Carlo simulation

Introduction

Water mains are critical infrastructures (CIs), and more than 
300 failures of water utilities (100–300 mm) could occur 
in a year and thus require urgent repair or replacement in 
North America [1]. Failure of water mains can cause long-
term failure of water distribution systems, thus losing a 
huge amount of drinking water [2]. Over 2 trillion gallons 
of treated drinking water is wasted owing to an estimated 
240,000 annual water main breaks in the United States [3]. 
According to the Water Infrastructure Report Card published 
by the American Society of Civil Engineering (ASCE) in 
2017, the water systems such as water mains in the US have 
attained an overall grade of “D.” This means that the water 
main infrastructures are in poor-to-fair condition and a large 
portion of the infrastructure at risk of failure [3]. Similarly, 
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the Canadian Infrastructure Report Card revealed that 23% 
of water infrastructures are in poor-to-fair condition [4]. 
Additionally, $1 trillion is needed for the maintenance of 
water infrastructure to meet the future demand for water over 
the next 25 years [3].

Climatic variations may cause damage to critical infra-
structures such as water mains [5]. Temperature variations 
can lead to changes in frost depths and ground movements, 
resulting in stresses that exceed design values and increasing 
the potential of failure [6]. The failure of water mains may 
result from dynamic factors and static factors. Dynamic fac-
tors are varied over time, including environmental and oper-
ational factors such as soil moisture, temperature, landslide, 
external loads, and water pressure. Whereas, static factors 
are fixed over time, such as pipe diameter, pipe age, and pipe 
material [2]. Environmental factors, including temperature 
and climate change, can lead to the deterioration and failure 
of water mains. Damage to buried infrastructures such as 
water mains may result from climate events (e.g., flood) and 
climate variations in temperature and rainfall patterns [7].

Affecting of Climate Variability on Water Main 
Failures

As pointed out by Vreeburg et al. [8], the number of breaks 
of water mains that are made of cast iron increases during 
the winter season, which suggests the association between 
temperature and failure occurrences. On one hand, Bruaset 
and Saegrov [9] found that the failure rate of water mains 
generally increases with the decrease in temperature. On 
the other hand, Makar [10] concluded that frost loading is 
an essential factor in evaluating the failure of water mains. 
Frost heaves can impose significant strains on pipe walls 
and thus lead to distresses and possibly failure. Soil freezing 
and thawing cycles due to seasonal changes in temperature 
can lead to water leakage and eventually failure [9]. The 
association between the failure of water mains and influen-
tial factors such as pipe age, pipe diameter, water pressure, 
soil corrosivity, external loads, and temperature have been 
studied by previous studies [11–13]. In particular, results 
showed that the drop in temperature enhances the number 
of water main breaks. In other words, temperature fluctua-
tion tend to increase the number of water main breaks in 
winter. Goodchild et al. [14] developed a linear model to 
predict the water main breaks as a function of environmen-
tal and climate variables such as solar radiation, minimum 
grass temperature, daily rainfall, soil moisture deficit, evapo-
transpiration, water content on the topsoil, water wind, and 
actual evaporation. Results proved that minimum grass 
temperature, daily rainfall, soil moisture deficit, and actual 
evaporation can significantly contribute to the prediction of 
pipe breaks for cast iron and asbestos cement pipe materi-
als buried in clay and loam. In another study, Rajani et al. 

[11] developed a non-homogenous Poisson model to study 
the impact of temperature variations on water mains breaks 
that made of cast iron (CI), ductile iron (DI), and galvanized 
steel. They found that temperature variations may impact 
the failure of water mains. One of their study limitations is 
that the developed model addressed only one climate vari-
able that may contribute to the failure of water mains. Other 
studies [15, 16] conducted a statistical analysis to prove the 
association between climate variations (e.g., temperature 
and precipitation) and pipe failure in cold regions. Results 
proved that the freezing index is one of the most signifi-
cant climate covariates that may contribute to the failure of 
water mains. Kabir et al. [17] found that water mains made 
of metallic material are at high risk of failure in the sum-
mer and winter seasons. Kleiner and Rajani [18, 19] studied 
three climate variables to predict the annual breaks of water 
mains including cumulative annual rain deficit  (RDc), annual 
freezing index (FI), and snapshot rain deficit  (RDs). FI is a 
surrogate measure for winter severity in a given year,  RDc 
is a surrogate measure for average annual soil moisture, and 
 RDs is a surrogate measure for locked-in winter soil mois-
ture. They applied deterministic and probabilistic models to 
predict the annual breaks of water mains using a time-step 
of one year. Additionally, the developed models are able 
to predict the failure of water mains under the defined cli-
mate variables. Gould et al. [20] found that soil shrinkage 
in nonfreezing regions that result from lower soil moisture 
enhances the pipe failure rate. Statistical methods [5, 21] 
performed to study the impact of climate variations on the 
integrity of water distribution systems.

Failure Prediction Model of Water Mains

Numerous studies have addressed the failure prediction of 
water mains based on static and dynamic factors, such as 
pipe diameter, materials, length, pipe age, and tempera-
ture. Kleiner and Rajani [22] presented a method to fore-
cast the failure rate of water mains by taking into account 
pipe aging, climate (including freezing index and rain defi-
cit), and operation conditions (e.g., the cumulative length 
of replaced mains). Freezing index and rain deficit were 
calculated, given climate data, and then used to predict the 
failure of water mains. The results proved that the proposed 
method can be used to predict the failure rate based on cli-
mate and operational factors. Al-Barqawi and Zayed [23] 
applied ANN to study the impact of temperature, rainfall, 
number of breaks, and operating pressure on the condition 
of water mains. Yamijala et al. [24] applied multilinear, 
multivariate exponential regression, and logistic general-
ized linear model (GLM) to estimate the likelihood of pipe 
breaks, considering various variables, such as pipe diameter, 
materials, length, land use, temperature, soil moisture, and 
soil type. The results demonstrated that GLM performed 
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well compared with other models. Jafar et al. [25] applied 
artificial neural networks (ANN) to predict the failure rate of 
water mains based on operational and static variables. The 
ANN was trained on data collected from a city in Northern 
France. The results showed that the ANN can be effectively 
utilized in the failure prediction of water mains. Nishiyama 
[26] applied ANN to forecast the failure of water mains 
based on pipe age, length, and soil type. Francis et al. [27] 
used Bayesian belief networks (BBNs) to predict the fail-
ure of water mains, considering several variables, such as 
pipe materials, diameter, age, demographic variables, and 
temperature. Shirzad et al. [28] suggested the use of sup-
port vector machine (SVM) over ANN to predict the failure 
rate of water mains. Both models were developed on the 
basis of several factors, including hydraulic pressure, pipe 
diameter, length, age, and depth. In another work, Kabir 
et al. [29] developed a model to predict the failure of water 
mains using Bayesian and multiple linear regressions based 
on soil resistivity, land use, freezing index, rain deficit, aver-
age temperature, pipe age, and length. The results showed 
the significant contribution of these factors on the failure 
prediction of water mains. Furthermore, Bayesian linear 
regression performed better than multiple linear regression. 
Demissie et al. [30] developed dynamic Bayesian network 
(DBN) to predict the number of pipe failures on the basis 
of static (e.g., pipe material and diameter) and environmen-
tal (e.g., freezing index and thawing index, rainfall deficit, 
and soil corrosion) variables. Farmani et al. [31] studied the 
impact of static (e.g., pipe diameter and length) and dynamic 
(e.g., pipe age and temperature) variables on the failure of 
water mains. K-mean clustering approach was applied to 
divide the dataset into homogenous groups according to the 
similarity in water main features. Afterward, the Evolution-
ary Polynomial Regression (EPR) model was developed to 
predict the number of failures based on soil type, diameter, 
and age. Winkler et al. [32] developed an ensemble deci-
sion tree model using historical data from Austria to predict 
the failure of water mains based on static and operational 
variables. Sattar et al. [33] developed an extreme learning 
machine (ELM) to predict the failure of water mains based 
on the pipe length, material, pipe protection method, and 
diameter. The model was trained using 9500 instances of 
historical failure records from the Greater Toronto Area, 
Canada. Shirzad and Safari [34] predicted water main fail-
ures using Bayesian model applied multivariate adaptive 
regression splines and random forest to predict pipe failure 
in two water distribution systems based on pipe age, pipe 
length, depth, and average hydraulic pressure. Vališ et al. 
[35] proposed a dynamic linear approach based on Kalman 
recursion to forecast the failure rate of water mains using 
incomplete time-series data. Almheiri et al. [2] developed 
models to predict the time of failure of water mains using 
intelligent approaches, including ANN, ridge regression, 

and ensemble decision tree (EDT). The developed models 
were trained using data collected from Quebec City water 
mains, considering variables, such as the materials, length, 
and diameter of pipes.

Motivation

The deterioration of water mains is a complex process that 
may result from critical factors can be climate variations, 
dynamic traffic load, internal pressure, and corrosion. The 
impact of these factors may lead to different failure modes, 
holes due to corrosion, joint failure, circumferential break, 
longitudinal cracking or split due to high water pressure, 
and blow out. Partial and incomplete information regarding 
the failure of water mains can lead to high uncertainties in 
the failure prediction of water mains [36, 37]. The integrity 
of pipelines and the prediction of the failure of water mains 
is essential to maintain the sustainability of water main net-
works and keep water safe for human consumption. In addi-
tion, it helps owners and decision-makers to: (1) develop 
strategies that mitigate the risk of failure; (2) and avoid early 
replacement of a pipeline before the end of its economic 
life safe.

Although the impact of climate changes on our infra-
structures (e.g., water mains) has become a concern, only 
a few studies have addressed the failure prediction of water 
mains studying environmental and climate variables, such 
as temperature, freezing index, rainfall deficit, soil moisture, 
and soil type, for the failure prediction of water mains [22, 
24, 27, 30, 31], Table 1. Besides, a few studies [22, 26, 35] 
have forecasted the estimated yearly failure of water mains 
in the future.

Unlike previous studies, we propose a new temporal 
framework to predict the failure of water mains at selected 
locations that share similar monthly failure patterns. The 
proposed framework can predict the failure of any water 
mains and at two locations simultaneously. Besides, we 
examine the contribution of other climate variables in the 
failure prediction of water mains, such as frost days, frost 
depth, dry index, and heavy precipitation. The main objec-
tives of this study are as follows: (1) is to propose a temporal 
framework that can capture the spatial and temporal pattern 
of failure frequency, and accurately predict the monthly fail-
ure of water mains up to nine-time-step ahead at selected 
locations, (2) is to validate the model reliability and perfor-
mance via Monte Carlo simulations. To achieve these objec-
tives, we collect spatiotemporal data of failure frequency 
of water mains and climate for selected locations, calculate 
and define climate variables from given climate data, and 
apply Granger causality test to define climate variables that 
provide useful information regarding the failure prediction 
of water mains in multiple cities. The definition of failure 
frequency here is the number of breaks per water mains that 
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occurred at a specific time and location within a water distri-
bution system (WDS). The failure modes of water mains at 
selected locations can be circumferential break, holes, joint 
failure, blow out, or longitudinal cracking. Pipe corrosion is 
the predominant reason for pipe failure modes [2].

Spatiotemporal data specifying where and when the 
failure of water mains occurred are collected with respect 
to climate records. In other words, spatiotemporal data 
are an extension of spatial databases that manage time 
and space information [38, 39]. Climate change can sub-
stantially affect the condition and service life of buried 
utilities, including water infrastructures. Canada’s climate 
varies spatially (across regions) and temporally (from one 
season to another). Therefore, in this study, two Canadian 
cities (London and Quebec) are chosen as the selected 
locations for the failure prediction of water mains. As 
stated by Boyle et al. [7], these cities are prone to climate 
hazards (e.g., floods) and climate variables (e.g., changing 

in temperature and precipitations) that can cause damage 
to water distribution systems (e.g., water mains). Further-
more, Quebec and Ontario are the highest populated ter-
ritories in Canada. Quebec and Ontario represent 23% and 
39% of the total Canadian population, respectively (see 
Fig. 1), [40].

In this study, we develop a model that predicts the 
failure of water mains at two water distribution systems 
simultaneously. Through data exploration, we find that 
the multivariate series failure of water mains in both cit-
ies (a) Quebec (b) and London follows similar temporal 
patterns (as shown in Fig. 2). The proposed model also 
can be extended to predict the failure of water mains at 
more than two locations under climate variations. Besides, 
we propose two scenarios to predict the failure of water 
mains to prove the contribution of climate variations in 
predicting the failure of water mains (see “The proposed 
framework”).

Table 1  Summary of failure prediction models of water mains based on climate and environmental variables

Reference Variables Output

Kleiner and Rajani [22] Operational and climate variables including freezing index and rainfall deficit Failure rate
Yamijala [24] Diameter, material, length, land use, soil type, soil moisture, and temperature Likelihood of break
Francis et al. [27] Material, diameter, age, demographic variables, and temperature Pipe breaks
Kabir et al. [48] # of bursts, age, diameter, length, soil resistivity, soil corrosion Failure rate
Demissie et al. [30] Length, diameter, number of previous failures, type of service connection, freezing 

index, thawing index, rainfall deficit, and soil corrosion
Pipe breaks

Farmani et al. [31] Length, diameter, age, temperature, and freezing index Pipe breaks

Fig. 1  Population weight of 
Canada by territory estimated in 
January 2020 [40]
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The Proposed Framework

In the real world, a time-series is behaviorally dependent on 
other processes; therefore, it is essential to simultaneously 
consider several time-series, which are referred to as multi-
variate time-series. Besides, a time-series at different spatial 
locations can be considered a multivariate time-series.

The linear interdependence among multivariate time-
series can be captured using different time-series models, 
such as VAR. VAR is a stochastic process model that relates 
the values of the multivariate time-series at a time t to some 
linear combinations of the multiple time-series at previous 
times.

Suppose a K-variate time-series VAR(p) model is given 
by:

where Yt ≡ (Y
(1)
t ,… , Y

(K)
t ),

{
�l ∶ l = 1,… , p

}
 are K × K 

state-transition matrices and 
{
Wt

}
 is a white-noise process 

for each K-variate with a mean of zero and a covariance 
matrix Q. This white noise is assumed to be Gaussian, which 
can be expressed as Wt ∼ iidGau(0,Q) , where iid refers to 
independent and identically distributed. Moreover, the tran-
sition matrix � contains weights that describe how the mul-
tivariate time-series are linearly combined to influence the 
time-series at a certain time. For instance, the weights in the 

(1)Yt = �1Yt−1 +�2Yt−2 +⋯ +�pYt−p +Wt,

transition matrix �1 define how the multivariate time-series 
at t − 1 are linearly combined to influence the time-series 
at time t:

Suppose VAR (1) process:

Assume that Yt is a stationary process and has a mean of 
zero means; therefore, all the autocovariance and cross-covari-
ance functions depend on the lag difference between temporal 
and spatial indices. The lagged covariance matrices for obser-
vations Y1,… ,YT can be obtained by:

where C(�)

Y
 is to be the �th-lagged covariance matrices of the 

process 
{
Yt

}
 and �̂ is the K-dimensional empirical mean. 

The parameter matrices � and Q can be estimated via the 
maximum-likelihood or method of moments. The � and Q 
estimators of the method of moments are given by Eqs. (4) 
and (5) [38].

In this study, the parameter estimation is based on the maxi-
mum likelihood. More details can be found in the study of 
[41]:

(2)Yt = �Yt−1 +Wt.

(3)ĉ
(�)

Y
≡

1

T

T−�∑

t=1

(
Yt+� − �̂

)
(Yt − �̂),

(4)�̂ = Ĉ
(1)

Y
(Ĉ

(0)

Y
)−1.

Fig. 2  Failure frequency of 
water mains at selected loca-
tions

(a) Failure frequency of water mains at Quebec City.
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(b) Failure frequency of water mains at London City.
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In VARXk,m(p, s) , 
{
�

�

}
 is modeled in terms of its own 

previous p and s values of a stationary m-dimensional vec-
tor series 

{
�

�

}
:

where p refers to the number of preceding values, {
�l ∈ Rk×k

}p

l=1
 are the estimated endogenous parameter 

matrices, and 
{
�j ∈ Rk×k

j

}s

j=1
 are the estimated exogenous 

parameter matrices.
In this study, Y ∈ Rt×d and X ∈ Rt×d refer to the multivari-

ate time-series (e.g., spatiotemporal failure records), and cli-
mate variables collected from sensors (weather stations) at a 
time-step t (t refers to a time-of-month index). The main aim 
of this study is the failure frequency prediction of water mains 
ŷ ∈ Rn (number of breaks per water mains that occurred within 
a WDS) under climatic variations X . Climate variables, as 

(5)Q̂ = Ĉ
(0)

Y
− �̂�(Ĉ

(1)

Y
).

(6)Yt =

p∑

l=1

�lYt−l +

s∑

j=1

BjXt−j +Wt,

exogenous variables, were incorporated into the model. Two 
scenarios are proposed in this study. In scenario 1, the failure 
of water mains at selected locations relies on its previous val-
ues. In scenario 2, the failure also relies on climate variations. 
The proposed framework is a multivariate time-series (VAR) 
model where the future prediction of a time-series Yt relies on 
its previous values, whereas in the (VARX) model, Yt relies on 
the previous values of Yt−1 and Xt . The proposed framework for 
the failure prediction of water mains that incorporates the con-
tribution of climatic variations, Fig. 3. Intensive reviews of the 
literature were conducted to identify critical climate variables 
that contribute to the failure of water mains. Failure records 
of water mains at selected locations (Quebec and London, 
Ontario) were collected from municipalities, and climate data 
were obtained from weather stations located at selected loca-
tions. The climate and failure events were connected through 
the date of the failure of the water mains. The Granger causal-
ity test was then applied to investigate the climate variables 
that can provide statistically significant information that can 
be useful in predicting the failure of water mains. Two models 
were developed to predict the failure of water mains: vector 

Fig. 3  Proposed framework for 
the failure prediction of water 
mains under climatic variations
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autoregression (VAR) and vector autoregression with exoge-
nous variables (VARX). Both models can be applied to predict 
the failure of water mains at selected locations. However, the 
VARX model incorporates the impact of climatic variations 
on the failure prediction of water mains. Model calibration was 
implemented to define the number and type of the parameters 
in the model. Several candidate models of VAR and VARX 
were developed to select the best model in terms of the per-
formance based on the Akaike information criterion (AIC) 
and Bayesian information criterion (BIC) criteria (see “The 
proposed framework”). In addition, the models were designed 
to predict the failure of water mains up to 9 months ahead. 
The developed models were evaluated using prediction mean 
square error, root-mean-square error, and accuracy. Finally, 
Monte Carlo (MC) simulation was applied to verify the reli-
ability of the developed model.

Granger Causality Test

In this study, the prediction of future water main failures 
relies on their own previous values and climate variables that 
“Granger-cause” the failure. The Granger causality test was 
applied to ensure that climate variables were helpful in the 
failure prediction of water mains at both selected locations. 
More specifically, suppose that Xt is a time-series (or an “exog-
enous variable” in the present study) that can be used to predict 
the model target (Yt) . Xt can then be said to “Granger-cause” 
Yt if the prediction of Yt in terms of the previous values of 
Yt and Xt is statistically significant more than doing so with 
the previous values of Yt . An F test was applied to obtain the 
p value and find whether Xt provides statistically significant 
information that can be useful in predicting the failure of water 
mains (Yt) . In F-test, the null hypothesis (H0) assumes that all 
estimated coefficients of climate variables are equal to zero. 
In other words, these climate variables are not contributing 
to the failure of water mains. Whereas, alternative hypothesis 
(Ha) assumes that at one estimated coefficient of climate vari-
able is nonzero and thus contributing to the failure of WDS. 
We reject null hypothesis if p value is less than the confidence 
interval ( � = 0.05).

Let 
{
Xt

}T

t=1
 be the lagged variables of X and 

{
Yt
}T

t=1
 for Y. 

Furthermore, suppose that the vector 
{
Xt

}T

t=1
 can be donated as 

��⃗Xt , and the Granger casualty test was performed by conducting 
the following regressions [Eqs. (7) and (8)]:

(7)Yt ≈ � ⋅ ������⃗Yt−1 + B ⋅ ��⃗Xt.

(8)Yt,k ≈ �.������⃗Yt−1.

Model Calibration and Selection Criteria

Considering the completeness of the model in terms of the 
number and type of the parameters that were to be incorpo-
rated into the predictive model is crucial. Time lags were 
considered during the model calibration. To achieve this goal, 
a greater number of estimation parameters were specified at 
first, and then, the number of parameters was reduced to avoid 
model complexity and overfitting. The goodness of fit was 
used to test the performance of the statistical model. The best 
model can be selected among several candidate models. In 
a time-series analysis, the AIC and BIC are common crite-
ria used in model selection when the model parameters are 
estimated via the maximum-likelihood method [42]. The can-
didate model with a minimum value of AIC and BIC can be 
chosen as the best model for predicting future values. AIC and 
BIC can be calculated using a set of model parameters (�) , 
the likelihood of the candidate model, the data evaluated at 
the maximum-likelihood estimation of (�) , and the number of 
estimated parameters of the candidate model (k) as expressed 
in Eqs. (9) and (10) [43, 44]:

Predictive Model Performance

The last 2 years of time-series data are held out to validate 
the performance of the predictive model, and the remaining 
data were used to fit the model. A set of mathematical equa-
tions prediction mean square error (PMSE), root-mean-square 
error (RMSE), and accuracy was used for the model evaluation 
[Eqs. (11) and (12)]. The model accuracy was measured by 
Eq. (13), where T refers to selected locations and time steps in 
the holdout sample:

(9)AIC = −2 log L(�̂�) + 2k,

(10)BIC = −2 log L
(
�̂�
)
+ 2 log k.

(11)PMSE =
1

T

T∑

i=1

(FF(i) − forecast ⋅ FF(i))2,

(12)RMSE =

√√√
√ 1

T

T∑

i=1

(FF(i) − forecast ⋅ FF(i)),

(13)Accuracy = 1 −
1

T

T∑

i=1

|
|||

forecast ⋅ FF(i) − FF(i)

FF(i)

|
|||
.



 International Journal of Geosynthetics and Ground Engineering            (2020) 6:54 

1 3

   54  Page 8 of 16

Reliability of the Proposed Model

Monte Carlo (MC) simulation is applied to test for uncertain-
ties in the developed predictive model. It is a class of compu-
tational algorithms that relies on drawing repeated S samples 
from the population distribution, referred as X1 , X2,..XS. Given 
the samples, the distribution of f (X ) can be estimated using 
the empirical distribution of 

{
f
(
XS

)}S

s=1
 which is called MC 

approximation. MC simulation can be used to compute the 
expected/predictive value of any function of a random vari-
able. Basically, after the random samples have been drawn, 
the arithmetic mean of the function applied to the samples can 
be calculated according to Eq. (14) [45]:

where xs ∼ p(X) is the MC integration that is based on 
evaluating the estimated function over a range of fixed 
points. In this study, Monte Carlo was used to approximate 
the predicted value of failure frequency of water mains. In 
other words, the model reliability of the developed model 
was computed using MC approximation. Accuracy of MC 
approximation was measured under different sample itera-
tions, from 100 to 1000, to validate the reliability of the 
developed model (using Eq. 13). The multivariate time-
series (e.g., spatiotemporal failure records) are assumed 
to be jointly Gaussian distributed with a mean of zero and 
covariance matrix Q. In this study, the developed temporal 
model was used to generate a set of random process sam-
ples that reflected the statistical properties of the actual 
data. The conditional simulation was performed using MC 
that required the cumulative distribution function of sam-
ple values (iterations) and the basic parameters input to be 
constant at each time t in the prediction horizon, and from 
iteration to another. The system was simulated from 400 
to 1000 iterations to represent the possible distribution of 
the estimated of f (X) using MC simulation. In other words, 
iterations of failure frequency were generated using MC 
simulation. Sample statistics was then estimated from the 
generated iterations at each time t in the prediction horizon. 
The predicted values of failure frequency of water main are 
the mean across the iterations.

Spatiotemporal Data and Collection Method

The proposed approach was developed to predict the failure 
of water mains at selected locations under climatic varia-
tions. Climate data were collected from a weather station 
located in selected locations, whereas the failure records 
of water mains were collected from municipalities. The 

(14)E
[
f (X)

]
= ∫ f (X)p(x)dx ≈

1

S

S∑

s=1

f
(
xs
)
,

climate and failure records were connected through the date 
of the failure of water main. Data connection and collection 
procedures of the climate and failure of water mains are 
depicted in detail in Fig. 4. The subsequent sections explain 
the data aggregation and collection of climate data and fail-
ure records of water mains in detail.

Failure Data of Water Mains

The total monthly failure frequency of water mains at each 
spatial location was calculated from 1987 to 2001 using his-
torical failure records. As prior mentioned, failure frequency 
is the number of breaks per water mains that occurred at 
a specific time and location within water distribution sys-
tems (WDS). The failure data in London and Quebec were 
obtained from the City of London and Sainte-Foy, respec-
tively. The failure data consist of recorded information, such 
as pipe material, diameter, and length, year of installations, 
and breaks for each pipe within WDS. According to the 
failure data obtained from Quebec, the study period was 
defined to be spanned 15 years (1987–2001). Water mains 
in Quebec consist of different types of pipe material, namely, 
gray cast iron (CI), ductile iron with lining (DIL), ductile 
iron without lining (DIN), polyvinyl chloride (PVC), and 
concrete pipes. Similarly, pipe materials used in London are 
CI, PVC, concrete, copper, galvanized, polyethylene (PE), 
high-density polyethylene (PEX), steel, and cement asbestos 
pipes. The size of the water main is between 300 mm and 
600 mm, and from 300 to 450 mm in Quebec and London, 
respectively. Based on our analyzing the data, we decided 
to study the monthly failure patterns (the number of breaks 
per water distribution system per month). Additionally, 
we assume that it will be possible to observe the impact of 

Failure records of water 
mains were obtained 
from municipalities 

(Quebec and London)

The total monthly failure 
frequency (number of 

breaks that occurred per 
water mains within a 
water distribution)

Climate data that 
recorded by weather 

stations (senors) were 
collected from ECCC

Daily climate data were 
aggregated into average 
monthly records per year

The climate and failure 
data were connected 

through the date of water 
main failure

Fig. 4  Data collection method of water main failure and climate 
records
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climate (seasonality) variations upon failure occurrence dur-
ing single months (as previously shown in Fig. 2).

Climate Data and Climate Variables

The climate data for a 15-year period (1987–2001) were 
collected from the Environment and Climate Change Can-
ada (ECCC). These climate records were documented by 
weather stations that are located in different regions to moni-
tor the climatic variations all over Canada. In this study, the 
climate records were obtained from Montréal–Mirabel Inter-
national Airport station for Quebec and St. Thomas Water 
Pollution Control Plant for London. Each weather station 
has recorded climate information, such as air temperature 
(2 m from the surface) in Celsius (°C), relative humidity (%), 
10 m wind speed (WS) in (km/h), and P (mm). The weather 
station located in Quebec (named Montreal- Mirabel Inter-
national Airport) is the closest weather station to Sainte-Foy 
city without any missing records of climate data. Addition-
ally, we compare multiple climate records collected from 
weather stations located in Quebec to prove that the climate 
records over Quebec are almost the same. Thus, the validity 
of using climate data from Montreal–Mirabel International 
Airport weather station. In this study, T and P are used to 
calculate the climate variables in Table 2. Climate variables 
that provide significant information on the failure prediction 
of water mains are considered in this study (see “Results” 
section). The daily climate data obtained from ECCC were 
aggregated into average monthly records per year. The char-
acteristics of the climate of the two selected locations are 
presented in Table 2.

Dry index (DI) was used as a surrogate measure for soil 
moisture over a defined period, according to Eq. (15) [16], 
where T̄ and P are the average temperature (◦C) and cumula-
tive P (mm) over a defined period, respectively. In this study, 
DI was calculated for the months from April to October. T 
and P were defined in the proposed model as they contrib-
uted to the failure of water mains [22]:

Freezing index (FI) and thawing index (TI), as also 
defined in the proposed model, are expressed in units of 
degree-days (°Cd). The FI is the total average daily tem-
perature below zero and can be used as a measure of winter 
severity for the period from December to March [Eq. (16)]. 
Whereas, TI is defined as the total average daily tempera-
ture above zero within a defined period (March to May) 
[Eq.  (17)]. The authors defined other climate variables 
that have not been studied in the failure prediction of water 
mains, including frost days and frost depth. In this study, 
frost days (F) are proposed by the authors and defined as a 
measure of the winter severity during winter where T < 0 . 
Whereas, frost depth (FD) can be calculated given  FIc, 
according to Eq. (18) [46], where  FIc is the cumulative freez-
ing index. The name, unit, and description of each variable 
are summarized in Table 2. The climatic characteristics and 
failure frequency range of water mains of the studied spatial 
locations are presented in Table 3: 

(15)DI =
3 × T̄

P
.

(16)FI(i) =
|
||||

n∑

i=1

T̄
|
||||
, T̄ < 0,

Table 2  Summary of climate 
variables, name, unit, and 
description

Climate variable Unit Description

Temperature (T) Degree (°C) Average monthly T
Precipitation (P) mm Average monthly Pre
Dry Index (DI); [16] Degree (°C)/mm Equation (15)
Frost (F); assumed by the authors Days T < 0; from November 

to March (Winter 
period)

Freezing Index (FI) [22] Degree-days (°Cd) Equation (16)
Thawing Index (TI) [49] Degree-days (°Cd) Equation (17)
Frost Depth (FD) [46] m Equation (18)

Table 3  Monthly record of climatic characteristics and failure frequency range of water mains of the selected locations (1987–2001)

a Maximum value of climate variables

Variable Average T (°C) DI [(°C)/mm]a FI (Cd)a TI (Cd)a FD (m)a Failure frequency

Quebec − 18.04 to 21.52 1252 559.33 504.01 1.21 0–30
London − 9.98 to 23.11 3124 309.4 543.7 0.81 0–170
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Data Preprocessing and Scaling

Data aggregation was applied to calculate the total monthly 
failure frequency of water mains over the defined period 
(1987–2000) at selected locations. The failure frequency 
records and climate data were combined through the date 
of the failure of the water mains (1987 and 2001). The last 
2 years of data were held out for the validation of the per-
formance of the predictive model. Failure and climate data 
were normalized to be in the range of [0, 1] using Eq. 18 to 
maintain the performance of the developed model:

where X represents the input and the output of the model 
(failure frequency and climate variables).

Results

The failure of water mains can occur in summer and winter. 
However, the chance of failure of water mains in winter was 
higher than that in summer (as previously shown in Fig. 2). 
Moreover, the failure frequency in London was higher than 
that in Quebec over the defined period (1987–2001). This 
scenario may be caused by the diversity in geographical 
characteristics or other reasons. Additionally, the time-series 
decomposition of water main failures in Quebec and London 
proves the seasonality trend in the failure pattern, Fig. 5. 
Seasonality means that the changes occurred at specific reg-
ular intervals, such as monthly, weekly, or quarterly. Thus, 
we aim to build a model that can capture seasonality trends.

To reduce model complexity, climate variables that pro-
vide significant information regarding the failure of water 
mains were examined in this study. As previously men-
tioned, the Granger causality test was applied to consider 
climate variables that are useful in the failure prediction of 
water mains. The null hypothesis for the Granger causality 
test is that Xt does not Granger-cause Yt , so an F test was 
applied to obtain the p value and find whether Xt provides 
statistically significant information that can be useful in pre-
dicting the failure of water mains (Yt) . The Granger causality 
test shows that the failure of water mains is significantly 
influenced by some climate variables (p value < 0.05). Cli-
mate variables ( Xt) , such as T, F, FI, and FD, give significant 

(17)TI(i) =
|
|
|
|
|

n∑

i=1

T̄
|
|
|
|
|
, T̄ > 0.

(18)FDfrost = 0.0174 × FI0.67
c

.

(19)Xnormalized =
X − Xmin

Xmax − Xmin
,

information regarding the failure of water mains at selected 
locations. Thus, we use these climate variables in predicting 
the failure of water mains.

The VAR model was developed to predict the failure of 
water mains and capture the interdependencies among the 
failures of water mains with lagged endogenous variables 
at selected locations. The VARX model, on the other hand, 
was developed to predict the failure of water mains under 
climatic variations using MATLAB version R2018a soft-
ware. The failure of water mains relies on its previous val-
ues and climate variables, including T, FI, F, and FD. The 
best model of VAR and VARX that was selected yields the 
minimal AIC and BIC values, given a set of candidate mod-
els. Table 4 presents a set of VAR candidate models, where 
VAR16 was selected as the best model. Table 5 illustrates a 
set of VARX candidate models, where VARX3 was selected 
as the best model. The complexity of VARX3 is less as it 
required a smaller number of parameters (30 parameters) to 
be estimated compare to the best candidate model of VAR 
(66 parameters). Besides, VARX3 incorporates the contribu-
tion of climate variations on water main failure.

The performance of VARX3 was tested using error matri-
ces [Eqs. (11) to (13)]. The average prediction error (PMSE, 
RMSE, and RMSE%) and percentage accuracy for the mul-
tivariate of the failure prediction of water mains at selected 
locations (Quebec and London), see Table 6. A 9-month 
prediction was issued every 1 month using the most recent 
actual failure dataset. The results prove that the model can 
predict up to 9 months ahead with a good average accuracy 
(Table 6). Figure 6 depicts the time-series plots of 3-month 
(a and b) and 9-month (c and d) predictions of water mains 
at selected locations (Quebec and London). A high failure 
frequency for the 3-month prediction will be accrued in win-
ter. The failure frequency in London is almost four times that 
in Quebec. Although the failure frequency is higher in win-
ter, it is still high in London during summer. Additionally, 
Fig. 6c, d shows that the proposed framework can predict 
the failure of water mains up to 9 months ahead. The model 
can also capture the seasonality of the failure of water mains. 
Figure 7 shows the performance of the failure prediction 
of water mains at selected locations. Overall, the accuracy 
of failure prediction up to nine months ahead is steady for 
Quebec and London (see Table 6 and Fig. 7).

The system can be simulated thousands of times between 
 103 and  106 using MC simulation [47]. However, MC simu-
lations were implemented at various numbers of iterations 
from 100 to 1000 to avoid expensive computational costs. 
MC simulations, on the other hand, were performed to verify 
the performance of the proposed model and measure model 
reliability. Results prove that the MC simulations converge 
to a good average accuracy from 100 to 1000 iterations 
(Fig. 8a). However, the MC simulation was performed at 
iterations of 400 to avoid the computational cost. Results 
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Fig. 5  Seasonal trend of failure 
frequency of water mains 
at a Quebec and b London 
(1987–2001)

Table 4  Set of VAR candidate model

Bold refers to the best model

Models Lag Order AIC BIC

VAR16 Lag-16 − 334.53 − 140.38
VAR20 Lag-20 − 301.82 − 62.98
VAR24 Lag-24 − 285.32 − 2.811
VAR30 Lag-30 − 254.49 91.53

Table 5  Set of VARX candidate models

Bold refers to the best model

Models Lag Order AIC BIC

VARX3 Lag-3 − 497.98 − 406.48
VARX9 Lag-9 − 389.36 − 227.88
VARX16 Lag-16 − 399.23 − 158.02
VARX20 Lag-20 − 373.17 − 87.73
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prove that the MC simulations and proposed model have 
approximately the same accuracy (see Figs. 7, 8b). Addition-
ally, the actual and the mean predicted failure frequency of 
water mains at selected locations using different iterations 
of MC simulations are nearly the same, Fig. 9. The stacked 
values of actual and predicted failure of water mains for all 
iterations of MC simulation follow the same patterns over 
time, Fig. 9. Results of MC simulations prove the reliability 
of the proposed model. Therefore, the proposed model is 
reliable and can be applied to predict the failure of water 
mains 9 months ahead at selected locations. In addition, 
the model incorporates the impact of climatic variations on 
the failure of water mains. Thus, municipalities can apply 
the developed model to predict the failure patterns of water 
mains given climate data and historical failure frequency of 
water mains at any water distribution system.

Conclusions

Failure prediction of water mains under climate variations 
is essential to avoid economic and environmental losses that 
may result from failure. The proposed approach can help 
decision-makers in municipalities to understand and predict 
failure of water mains under climate variations in any water 
distribution systems. Failure prediction of water mains, on 
the other hand, is an inexpensive approach compare to direct 
inspection for estimating the structural deterioration of a 
water distribution system. It may also help decision-makers 
come up with strategies and plans that will mitigate the fail-
ure of water mains under climatic variations. In future work, 
we will investigate the failure of water mains in other ter-
ritories that do not share similar climate conditions. Addi-
tionally, we will study the characteristic of each induvial 
pipe within WDS and include other critical factors that may 
contribute to the failure of water mains. Although long-term 
failure prediction is possible, we believe that the failure of 
water mains relies on other critical factors. Hence, we will 

extend the model for long-term predictions (10 years ahead) 
with the incorporation of the most critical factors. Besides, 
we will utilize a powerful mathematical tool such as artificial 
neural networks (ANN) using big data to predict the failure 
of water mains.

In this study, we select Quebec and London that are the 
most populated territories in Canada. Based on data explora-
tion and the proposed framework, the following conclusions 
can be made:

• Similar to previous studies [9, 17], the failure of water 
mains may occur during all seasons and reach its peak 
during winter seasons.

• The failure frequency of water mains in London is higher 
than that in Quebec. This condition may be due to other 
factors, such as soil types at each spatial location (the 
water mains in London may be buried inside active soil 
that experiences shrinkage when winter is over).

• A similarity in pipe failure patterns was found at both 
selected locations (Quebec and London).

• The failure pattern of failure frequency follows a monthly 
periodicity at both selected locations which may be due 
to climate variations. Results of Granger causality analy-
sis, on the other hand, prove that the fluctuations of cli-
mate factors such as FI, DI, F, and T may significantly (p 
value < 0.05) contribute to the failure of water mains.

• The proposed temporal model can provide an accurate 
failure prediction of nine months ahead (t + 9) of water 
mains at two locations simultaneously with data arriving 
at a frequency of 1 month. Although the failure events at 
two water distribution systems are independent, yet the 
model shows a promising capability of predicting the 
failure of water mains under climate variations.

• Many critical factors other than climate variations may 
affect the failure of water mains that are hard to obtain 
most of the time. Thus, long-term failure perfection can 
be inaccurate. The proposed model, on the other hand, 
can be extended to predict the failure of water main at 

Table 6  Average failure 
prediction error and accuracy in 
Quebec and London

City Prediction horizon

1 month 2 months 3 months 4 months 5 months 6 months 9 months

Quebec
 PMSE 0.01 0.164 0.105 0.081 0.067 0.057 0.062
 RMSE 0.085 0.125 0.261 0.216 0.165 0.174 0.374
 RMSE% 0.122 0.181 0.363 0.423 0.464 0.524 0.65
 Accuracy 0.83 0.81 0.66 0.66 0.65 0.66 0.67

London
 PMSE 0.072 0.059 0.041 0.031 0.025 0.025 0.011
 RMSE 0.270 0.240 0.184 0.149 0.124 0.124 0.068
 RMSE% 0.270 0.337 0.318 0.352 0.329 0.329 0.237
 Accuracy 0.72 0.66 0.64 0.62 0.65 0.68 0.69
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more than two locations and incorporate the impact of 
other factors.

• MC simulation was implemented to quantify the 
predicted mean of failure frequency of water mains. 
Results of MC simulations show how the failure of 

water mains at both selected locations changes over 
time at different iterations. Besides, the results of 
MC simulations prove the reliability of the developed 
model.

Fig. 6  Time series plot of 
the failure of water mains at 
selected locations (Quebec and 
London). a, b 3 months and 
c, d 9 months ahead, respec-
tively. FFQ failure frequency in 
Quebec, FFL failure frequency 
in London, blue line: actual data 
(Jan-87–Dec-00), green line: 
held-out data (Jan-00–Dec-01), 
red line: prediction (Jan-02–
Sep-02)

(a) Three months ahead of failure prediction of water mains in Quebec City, Quebec.
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(b) Three months ahead of failure prediction of water mains in London City, Ontario.
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(c) Nine months ahead of failure prediction of water mains in Quebec City, Quebec.
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(d) Nine months ahead of failure prediction of water mains London City, Ontario.
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Fig. 7  Average prediction accu-
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MC simulations vs. number 
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accuracy of MC simulations 
of 9 months ahead at selected 
locations
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0

0.2

0.4

0.6

0.8

1

1-month
ahead

2-month
ahead

3- month
ahead

4-month
ahead

5-month
ahead

6-month
ahead

7-month
ahead

8-month
ahead

9-month
ahead

A
cc

ur
ac

y

Prediction Horizon

Monte Carlo Accuracy

FFQ-MC FFL-MC

https://www.canada.ca/en/environment-climate-change.html
https://www.canada.ca/en/environment-climate-change.html


International Journal of Geosynthetics and Ground Engineering            (2020) 6:54  

1 3

Page 15 of 16    54 

the results, and drafted the manuscript with significant support and 
comments from the rest of the co-authors. All authors approved the 
final manuscript.

Compliance with Ethical Standards 

Conflict of interest The authors declare no competing interests.

References

 1. Makar JM, Desnoyers R, McDonald SE (2001) Failure modes 
and mechanisms in grey cast-iron pipes. In: Proceedings of the 
international conference on underground infrastructure research, 
Kitchener, Ontario, Canada

 2. Almheiri Z, Meguid M, Zayed T (2020) Intelligent approaches 
for predicting failure of water mains. J Pipeline Syst Eng Pract 
11(4):04020044

 3. ASCE (2017) “2017 infrastructure report card.” https ://www.infra 
struc turer eport card.org/. Accessed 10 July 2019

 4. CIRC (2019) “Canadian Infrastructure Report Card.” http://canad 
ianin frast ructu re.ca/en/index .html. Accessed 22 July 2019

 5. Wols B, Van Thienen P (2013) Impact of weather conditions on 
pipe failure: a statistical analysis. J Water Supply Res Technol 
AQUA 63(3):212–223

 6. Wols B, Van Daal K, Van Thienen P (2014) Effects of climate 
change on drinking water distribution network integrity: predict-
ing pipe failure resulting from differential soil settlement. Proce-
dia Eng 70:1726–1734

 7. Boyle J, Cunningham M, Dekens J (2013) Climate change adap-
tation and canadian infrastructure. International Institute for 
Sustainable Development (IISD, Winnipeg

 8. Vreeburg J, Vloerbergh I, Van Thienen P, De Bont R (2013) 
Shared failure data for strategic asset management. Water Sci 
Technol Water Supply 13(4):1154–1160

 9. Bruaset S, Sægrov S (2018) An analysis of the potential impact 
of climate change on the structural reliability of drinking water 
pipes in cold climate regions. Water 10(4):411

 10. Makar J (1999) Failure analysis for grey cast iron water pipes. 
In: Proc., AWWA distribution system symp. American Water 
Work Association, Denver

 11. Rajani B, Kleiner Y, Sink J-E (2012) Exploration of the rela-
tionship between water main breaks and temperature covariates. 
Urban Water J 9(2):67–84

 12. Bahmanyar GH, Edil TB (1983) Cold weather effects on under-
ground pipeline failures. In: Pipelines in adverse environments 
II, 1983. ASCE, pp 579–593

Fig. 9  Stacked charts of actual 
and the mean predicted failure 
frequency of water mains in a 
Quebec and b London using 
different iterations of MC 
simulations

(a) Actual and predicted values of FFQ.

0

20

40

60

80

100

120

Ja
n-

87
Ju

l-8
7

Ja
n-

88
Ju

l-8
8

Ja
n-

89
Ju

l-8
9

Ja
n-

90
Ju

l-9
0

Ja
n-

91
Ju

l-9
1

Ja
n-

92
Ju

l-9
2

Ja
n-

93
Ju

l-9
3

Ja
n-

94
Ju

l-9
4

Ja
n-

95
Ju

l-9
5

Ja
n-

96
Ju

l-9
6

Ja
n-

97
Ju

l-9
7

Ja
n-

98
Ju

l-9
8

Ja
n-

99
Ju

l-9
9

Ja
n-

00
Ju

l-0
0

Ja
n-

01
Ju

l-0
1

Prediction Horizon

Actual FFQ Iterations 400 Iterations 600 Iterations 800 Iterations 1000
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